
Chapter 10

Addition of Angular Momentum

In this Chapter we study the problem of adding angular momenta. The way quantum
angular momenta are added is more complex than what you are used to in the classical
world, and also leads to several counterintuitive phenomena. However, in order to be able
to add angular momenta properly, we first introduce the mathematical framework of a
tensor product.

10.1 Mathematical Description of Systems with
Many Degrees of Freedom

We will now describe the mathematical tools we will need to deal with the states and
operators of two or more particles.

10.1.1 Tensor Product of States
Suppose we have two particles, labeled A and B. From the postulates of quantum
mechanics we have enunciated at the beginning of this course, we know the state of the
system comprising both particles, let’s call it AB, must be described by a ray in a
complex vector space, or in a complex Hilbert space, if A and B have continuous degrees
of freedom. The natural question to ask is then, in what space does a generic state for
the two particles, |ψAB⟩, live in? If we call HA and HB the vector (Hilbert) spaces in
which the quantum states of the individual particles live, then it is a postulate of
quantum mechanics that a generic state vector describing the combined system lives in a
space

HAB = HA ⊗ HB. (11.1.1)

The symbol ⊗ refers to a tensor product, a mathematical operation that combines two
vector (Hilbert) spaces to produce another one. The meaning of the tensor product is
more easily understood in terms of explicit basis vectors, in the case of discrete vector
spaces. For this purpose, let us assume that HA is spanned by a set of basis vectors
{|µ1⟩, |µ2⟩, |µ3⟩, . . . |µnA

⟩} and that HB is spanned by a set of other basis vectors
{|ν1⟩, |ν2⟩, |ν3⟩, . . . |νnB

⟩}. Then, the vector space HAB is by construction spanned by
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basis vectors consisting of all the pairwise combinations of the basis vectors of A and B,
and the basis states of the composite system are written as

|µi⟩ ⊗ |νj⟩ ∀ i ∈ [1, nA], j ∈ [1, nB]. (11.1.2)

The symbol ⊗ is a mathematical operation known as the tensor product or outer product
of two vectors, that we are going to characterize more in detail in the following. For
the moment, we can already see that the total number of basis states for the composite
system is nA × nB and all quantum states in HAB can be written as linear combinations
of the composite basis states:

|ψAB⟩ =
∑
ij

cij|µi⟩ ⊗ |νj⟩, (11.1.3)

=
∑
ij

cij|λij⟩. (11.1.4)

with cij some complex coefficients, and where we have defined the basis vectors |λij⟩ ≡
|µi⟩ ⊗ |νj⟩. In order to work with these states, we need to know how to perform inner
products between states belonging to the tensor product space HAB. The inner product
between two basis states is defined as

⟨λij|λkl⟩ =
(
⟨µi| ⊗ ⟨νj|

)(
|µk⟩ ⊗ |νl⟩

)
(11.1.5)

≡ ⟨µi|µk⟩⟨νj|νl⟩ (11.1.6)
= δikδjl. (11.1.7)

This definition is relatively easy to understand: the inner product is obtained as the
product of the elementary (A or B) inner products. Also, it shows that the basis states
of the composite system are orthogonal by construction. As a consequence, the inner
product between two generic states of the composite system

|ϕ⟩ =
∑
ij

bij|λij⟩, (11.1.8)

|ψ⟩ =
∑
ij

cij|λij⟩, (11.1.9)

reads

⟨ϕ|ψ⟩ =
∑
ij

∑
kl

b∗
ijckl⟨λij|λkl⟩ (11.1.10)

=
∑
ij

∑
kl

b∗
ijcklδikδjl (11.1.11)

=
∑
ij

b∗
ijcij. (11.1.12)

We also see that the basis states of the composite system satisfy the closure relation:∑
ij

|λij⟩⟨λij| = I. (11.1.13)
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Formally speaking, the tensor product satisfies all the intuitive properties you might
expect from a product, for example, given a scalar a and two arbitrary vectors |v⟩ ∈ HA

and |w⟩ ∈ HB, we have

a(|v⟩ ⊗ |w⟩) = (a|v⟩) ⊗ |w⟩ = |v⟩ ⊗ (a|w⟩), (11.1.14)

also, it is distributive, thus

(|v1⟩ + |v2⟩) ⊗ |w⟩ = |v1⟩ ⊗ |w⟩ + |v2⟩ ⊗ |w⟩, (11.1.15)
|v⟩ ⊗ (|w1⟩ + |w2⟩) = |v⟩ ⊗ |w1⟩ + |v⟩ ⊗ |w2⟩. (11.1.16)

Finally, the construction of the product state space can be generalized from the case of two
particles to the case of many particles, A,B,C, . . ., since the composite vector (Hilbert)
space will be simply given by the tensor product of the individual state spaces

HABC... = HA ⊗ HB ⊗ HC ⊗ . . . , (11.1.17)

and in general, the resulting space will have a large dimension when we have many
particles, since it is the product of the size of the individual dimensions

nABC... = nA × nB × nC × · · · . (11.1.18)

Let us see an example of this formalism in the case of two spins 1/2, thus when HA and
HB are both vector spaces of dimension 2. As basis states of the individual spins we take
the eigenkets of Sz, thus the resulting tensor product space is given by the 4 states

|1⟩ = |+⟩A ⊗ |+⟩B, (11.1.19)
|2⟩ = |+⟩A ⊗ |−⟩B, (11.1.20)
|3⟩ = |−⟩A ⊗ |+⟩B, (11.1.21)
|4⟩ = |−⟩A ⊗ |−⟩B, (11.1.22)

and a generic state of two spins is written as

|ψ⟩ =
4∑

k=1
ck|k⟩, (11.1.23)

where, as always, by definition

ck = ⟨k|ψ⟩. (11.1.24)

For example, take

|ψ⟩ = 1√
2

(
|+⟩A ⊗ |−⟩B − |−⟩A ⊗ |+⟩B

)
, (11.1.25)

= 1√
2

(
|2⟩ − |3⟩

)
. (11.1.26)

We can easily check that this is a physically valid state, since it is correctly normalized:

⟨ψ|ψ⟩ = 1
2

(
⟨2|2⟩ + ⟨3|3⟩

)
, (11.1.27)

= 1. (11.1.28)
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10.1.2 Tensor Product of Operators
So far we have introduced the state space for a system of many particles but we haven’t
talked about the operators that act on this space, and how they are related to the
measurement process. If we have two operators T̂A and T̂B acting on the individual
spaces, the resulting operator that acts on the product space is also written as a tensor
product:

T̂AB = T̂A ⊗ T̂B, (11.2.1)

where the resulting operator T̂AB now acts on vectors in the space HA⊗HB. The composite
operator acts as follows:

T̂AB|λij⟩ =
(
T̂A ⊗ T̂B

)(
|µi⟩ ⊗ |νj⟩

)
(11.2.2)

≡
(
T̂A|µi⟩

)
⊗
(
T̂B|νj⟩

)
, (11.2.3)

thus, quite naturally, each of the two operators in the product act on the kets that belong
to the respective vector spaces. As a special case, notice that if we are given only an
operator that acts on one of the two subsystems, this is to be understood as

T̂AB = T̂A ⊗ ÎB (11.2.4)

if only T̂A is given, and where ÎB is the identity operator for subsystem B. Similarly,

T̂ ′
AB = ÎA ⊗ T̂B, (11.2.5)

if only T̂B is given. As a result, it is easy to see that these two operators, acting non-
trivially only on one of the two subsystems, commute since:

T̂ ′
ABT̂AB|λij⟩ =

(
ÎA ⊗ T̂B

)(
T̂A ⊗ ÎB

)(
|µi⟩ ⊗ |νj⟩

)
(11.2.6)

=
(
ÎA ⊗ T̂B

)(
T̂A|µi⟩ ⊗ ÎB|νj⟩

)
(11.2.7)

= T̂A|µi⟩ ⊗ T̂B|νj⟩, (11.2.8)

T̂ABT̂
′
AB|λij⟩ =

(
T̂A ⊗ ÎB

)(
ÎA ⊗ T̂B

)(
|µi⟩ ⊗ |νj⟩

)
(11.2.9)

=
(
T̂A|µi⟩ ⊗ ÎB|νj⟩

)(
ÎA ⊗ T̂B

)
(11.2.10)

= T̂A|µi⟩ ⊗ T̂B|νj⟩. (11.2.11)

thus [
T̂A ⊗ ÎB, ÎA ⊗ T̂B

]
= 0. (11.2.12)
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Let us give a concrete example for two spins 1/2, and imagine that we are interested in
studying the total z component of the spin. If we call Ŝ(A)

z and Ŝ(B)
z the spin operators

for the individual spins, such that

Ŝ(A)
z |m⟩A = ℏm|m⟩A, (11.2.13)

Ŝ(B)
z |m′⟩B = ℏm′|m′⟩B, (11.2.14)

for m,m′ = ±1/2, then it is natural to define the total spin as the sum of these two
operators. In order to do so, however, we need to recall that these operators are acting
on different spaces, thus before summing them up we need to “upgrade” them to be good
operators for the composite vector space. Thus the total Ŝ(AB)

z operator reads:

Ŝ(AB)
z = Ŝ(A)

z ⊗ Î(B) + Î(A) ⊗ Ŝ(B)
z . (11.2.15)

It is then straightforward to see how this operator acts on a general state. For example,
if we take a basis vector for the composite system, we have

Ŝ(AB)
z

(
|m⟩A ⊗ |m′⟩B

)
=
(
Ŝ(A)

z ⊗ Î(B) + Î(A) ⊗ Ŝ(B)
z

)(
|m⟩A ⊗ |m′⟩B

)
(11.2.16)

=
(
Ŝ(A)

z |m⟩A

)
⊗ |m′⟩B + |m⟩A ⊗

(
Ŝ(B)

z |m′⟩B

)
(11.2.17)

= ℏm
(

|m⟩A ⊗ |m′⟩B

)
+ ℏm′

(
|m⟩A ⊗ |m′⟩B

)
(11.2.18)

= ℏ(m+m′)
(

|m⟩A ⊗ |m′⟩B

)
, (11.2.19)

thus the composite state is an eigen-ket of the total spin, with an eigenvalue ℏ(m + m′)
that is the sum of the individual eigenvalues.

10.2 Addition of Generic Angular Momenta
Given two particles with given angular momenta operators, say Ĵ(1) and Ĵ(2), we would
like to study the total angular momentum that these two particles have. The resulting
angular momentum is the sum of the individual momenta, however we have to be careful
when performing the sum and recall that the two operators act on distinct Hilbert spaces,
H(1) and H(2). As discussed in the previous section, the correct way of summing the two
operators is then to first "upgrade" them to act on the same Hilbert space H = H(1)⊗H(2),
and then consider the sum. The total angular momentum operator is then to be defined
as

Ĵ = Ĵ(1) ⊗ Î(2) + Î(1) ⊗ Ĵ(2) (12.1.1)
=
(
Ĵ(1)x ⊗ Î(2) + Î(1) ⊗ Ĵ(2)x, . . .

)
(12.1.2)

=
(
Ĵx, Ĵy, Ĵz

)
. (12.1.3)

Moreover, the two angular momentum operators Ĵ(1) and Ĵ(2) act on different spaces, thus
their components commute: [

Ĵ(1)α ⊗ Î(2), Î(1) ⊗ Ĵ(2)β
]

= 0. (12.1.4)
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This is easily shown using the tensor product notation:(
Ĵ(1)α ⊗ Î(2)

)(
Î(1) ⊗ Ĵ(2)β

)
|Ψ⟩1 ⊗ |Ψ⟩2 =

(
Î(1) ⊗ Ĵ(2)β

)(
Ĵ(1)α|Ψ⟩1

)
⊗ |Ψ⟩2 (12.1.5)

=
(
Ĵ(1)α|Ψ⟩1

)
⊗
(
Ĵ(2)β|Ψ⟩2

)
. (12.1.6)

and similarly for the second term of the commutator, to find that indeed the latter
vanishes. Since it is quite cumbersome to carry around the tensor product symbols, in
the following we will use a slightly wrong but widely adopted notation, in which we
write the total angular momentum operator as

Ĵ = Ĵ(1) + Ĵ(2). (12.1.7)

This notation is compact but possibly also dangerous, because you might be tempted to
assume (wrongly) that Ĵ(1) and Ĵ(2) act on the same Hilbert space. However, we have
stressed many times now that this is not the case. So, just be careful when using this
notation, and if in doubt, just go back to the tensor product one! In compact notation,
the commutation relations for the components of the angular momenta read

[Ĵ(1)α, Ĵ(2)β] = 0 , (10.2.1)

As a consequence of this relationship, we can also easily verify that the total angular
momentum operator is still a valid angular momentum operator, in the sense that it
satisfies the usual commutation relations. We can check this explicitly:

[Ĵα, Ĵβ] = [Ĵ(1)α + Ĵ(2)α, Ĵ(1)β + Ĵ(2)β] (10.2.2)

= [Ĵ(1)α, Ĵ(1)β] + [Ĵ(2)α, Ĵ(2)β] (10.2.3)

= iℏ ϵα,β,γ Ĵ(1)γ + iℏ ϵα,β,γ Ĵ(2)γ (10.2.4)

= iℏ ϵα,β,γ Ĵγ . (10.2.5)

Physically speaking, the total angular momentum operator then must be also associated
to a rotation operator

D̂(θ) = e− i
ℏ Ĵ·θ , (10.2.6)

The meaning of this rotation operator is clarified considering the product of the two
rotation operators acting on each of the two subsystems, namely

D̂(1)(θ) D̂(2)(θ) = e− i
ℏ Ĵ(1)·θ e− i

ℏ Ĵ(2)·θ (10.2.7)

= e− i
ℏ Ĵ·θ , (10.2.8)

where in the last line we have used the fact that [Ĵ(1)α, Ĵ(2)β] = 0, thus the product
of the two exponentials can be absorbed into a single exponential of the sum. From
this expression we also deduce that the rotation operator associated to the total angular
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momentum corresponds to taking rotations of the coordinate systems of both particles at
the same time,

D̂(θ) = D̂(1)(θ) ⊗ D̂(2)(θ) . (10.2.9)

Moreover, since Ĵ is just another angular momentum operator, it will also have a set of
eigenvalues and eigenvectors of the “standard” form:

Ĵ2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ (10.2.10)

Ĵz |j,m⟩ = ℏm |j,m⟩ . (10.2.11)

This expression however does not tell the whole story, since there are other quantities that
commute with Ĵ2 and Ĵz. We can verify for example that the total momentum squared
commutes with the individual total momenta squared. To prove this, we start writing

Ĵ2 =
(
Ĵ(1)x + Ĵ(2)x

)2
+
(
Ĵ(1)y + Ĵ(2)y

)2
+
(
Ĵ(1)z + Ĵ(2)z

)2

= Ĵ2
(1) + Ĵ2

(2) + 2Ĵ(1)xĴ(2)x + 2Ĵ(1)yĴ(2)y + 2Ĵ(1)zĴ(2)z

= Ĵ2
(1) + Ĵ2

(2) + 2Ĵ(1)zĴ(2)z + 1
2

(
Ĵ+

(1) + Ĵ−
(1)

)(
Ĵ+

(2) + Ĵ−
(2)

)
− 1

2

(
Ĵ+

(1) − Ĵ−
(1)

)(
Ĵ+

(2) − Ĵ−
(2)

)
= Ĵ2

(1) + Ĵ2
(2) + 2Ĵ(1)zĴ(2)z + Ĵ+

(1)Ĵ
−
(2) + Ĵ−

(1)Ĵ
+
(2) ,

thus since [Ĵ2
(1), Ĵ

±
(1)] = [Ĵ2

(1), Ĵ
z
(1)] = 0, and similarly for the particle 2, we have

[Ĵ2, Ĵ2
(1)] = 0, (10.2.12)

[Ĵ2, Ĵ2
(2)] = 0. (10.2.13)

Moreover, two individual squared momenta also commute with the total Ĵz, since

[Ĵz, Ĵ
2
(1)] = [Ĵ(1)z + Ĵ(2)z, Ĵ

2
(1)] (10.2.14)

= [Ĵ(1)z, Ĵ
2
(1)] (10.2.15)

= 0, (10.2.16)

[Ĵz, Ĵ
2
(2)] = [Ĵ(1)z + Ĵ(2)z, Ĵ

2
(2)] (10.2.17)

= [Ĵ(2)z, Ĵ
2
(2)] (10.2.18)

= 0. (10.2.19)
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This means that we have four mutually commuting quantities, Ĵ2, Ĵ2
(1), Ĵ2

(2) and Ĵz whose
eigenvalues can be used to index the eigen-kets of the total momentum such that

Ĵ2 |j1, j2; j,m⟩ = ℏ2j(j + 1) |j1, j2; j,m⟩ , (10.2.20)

Ĵz |j1, j2; j,m⟩ = ℏm |j1, j2; j,m⟩ , (10.2.21)

Ĵ2
(1) |j1, j2; j,m⟩ = ℏ2j1(j1 + 1) |j1, j2; j,m⟩ , (10.2.22)

Ĵ2
(2) |j1, j2; j,m⟩ = ℏ2j2(j2 + 1) |j1, j2; j,m⟩ . (10.2.23)

10.2.1 Tensor-Product Basis
While the representation we have introduced above is the “standard” representation of
the composed momenta, it is not very convenient to work with. It is in fact more natural
to introduce basis states that are simultaneous eigen-kets of the individual components,
and that we have already analyzed in the previous Chapters. We therefore consider the
tensor-product basis states

|j1, j2;m1,m2⟩ = |j1,m1⟩ ⊗ |j2,m2⟩ , (10.2.24)
that are simultaneous eigen-kets of Ĵ2

(1), Ĵ
2
(2), Ĵ(1)z, Ĵ(2)z. These four operators are

obviously mutually commuting, since operators with different particle indexes act on
different Hilbert spaces (thus commute) and same-particle operators commute as well,
i.e. we already know that [Ĵ(1), Ĵ(1)z] = [Ĵ(2), Ĵ(2)z] = 0. The basis eigen-kets we consider
then satisfy

Ĵ2
(1) |j1, j2;m1,m2⟩ = ℏ2j1(j1 + 1) |j1, j2;m1,m2⟩ , (10.2.25)

Ĵ2
(2) |j1, j2;m1,m2⟩ = ℏ2j2(j2 + 1) |j1, j2;m1,m2⟩ , (10.2.26)

Ĵ(1)z |j1, j2;m1,m2⟩ = ℏm1 |j1, j2;m1,m2⟩ , (10.2.27)

Ĵ(2)z |j1, j2;m1,m2⟩ = ℏm2 |j1, j2;m1,m2⟩ . (10.2.28)

While this basis is convenient, the tensor-product states however are not eigenstates of
the total momentum squared. This is because we cannot diagonalize at the same time
the four operators above (Ĵ2

(1), Ĵ
2
(2), Ĵ(1)z, Ĵ(2)z) and also Ĵ2. This can be checked noticing

that for example Ĵ2 does not commute with the single-particle Ĵz operators:

[Ĵ(1)z, Ĵ
2] = [Ĵ(1)z, Ĵ

2
(1) + Ĵ2

(2) + 2Ĵ(1)xĴ(2)x + Ĵ+
(1)Ĵ

−
(2) + Ĵ−

(1)Ĵ
+
(2)] (10.2.29)

= [Ĵ(1)z, Ĵ
+
(1)Ĵ

−
(2) + Ĵ−

(1)Ĵ
+
(2)] (10.2.30)

= Ĵ(2)z[Ĵ(1)z, Ĵ
+
(1)] + [Ĵ(1)z, Ĵ

−
(1)]Ĵ

+
(2) (10.2.31)

= ℏĴ(2)zĴ
+
(1) − ℏĴ−

(1)Ĵ
+
(2) (10.2.32)

̸= 0. (10.2.33)
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Nonetheless, we can still use this convenient basis to express the eigen-kets of the total
angular momentum squared, i.e. we can develop the eigen-kets as

|j1, j2; j,m⟩ =
∑

m1m2

|j1, j2;m1,m2⟩ ⟨j1, j2;m1,m2|j1, j2; j,m⟩ . (10.2.34)

The coefficients of this transformation,

Cjm
j1m1j2m2 ≡

〈
j1, j2;m1,m2

∣∣∣ j1, j2; j,m
〉
, (10.2.35)

are called Clebsch–Gordan coefficients and play the vital role of connecting the two
representations.

10.2.2 Properties of Clebsch–Gordan coefficients
There is a number of important properties of these coefficients that we can already deduce
at this stage. First of all, the coefficients vanish unless

m = m1 +m2. (10.2.36)

This can be proven noticing that(
Ĵz − Ĵ(1)z − Ĵ(2)z

)
|j1, j2; j,m⟩ = 0, (10.2.37)

thus multiplying this equation by ⟨j1, j2;m1,m2| we have

(m−m1 −m2)⟨j1, j2;m1,m2|j1, j2; j,m⟩ = 0, (10.2.38)

implying that the Clebsch–Gordan coefficients (appearing in the left-hand side of this
equation) must vanish unless m = m1 +m2. This condition is quite natural, since it tells
us that the total Ĵz has an eigenvalue which is the sum of the two individual eigenvalues
of Ĵ(1)z and Ĵ(2)z.
The other important condition is on the possible values that j can take; as it turns out
that

|j1 − j2| ≤ j ≤ j1 + j2. (10.2.39)
In order to see why this is the case, remember that

−j ≤ m ≤ j, (10.2.40)

−j1 ≤ m1 ≤ j1, (10.2.41)

−j2 ≤ m2 ≤ j2. (10.2.42)

Now, if we set m = j and j1 = m1, the inequality for m2 (which is m2 = m−m1) becomes

−j2 ≤ j − j1 ≤ j2, (10.2.43)

j1 − j2 ≤ j ≤ j1 + j2. (10.2.44)

Also, if we take m = j and j2 = m2, the inequality for m1 (= m−m2) becomes

−j1 ≤ j − j2 ≤ j1, (10.2.45)

j2 − j1 ≤ j ≤ j1 + j2, (10.2.46)

thus we conclude with Eq. (10.2.39).
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State Counting
An alternative way of convincing ourselves that Eq. (10.2.39) must be true is by counting
the basis states in the two representations. In other words, we can count how many basis
states |j1, j2;m1,m2⟩ = |j1m1⟩ ⊗ |j2m2⟩ exist and how many states |j1, j2; j,m⟩ exist. In
the first case, we know that the total number of states is given by the product of the
number of states spanned by the individual kets that are taken into the tensor product,
thus

NI =
(
2j1 + 1

)(
2j2 + 1

)
. (10.2.47)

In the other case, we know that for each j there are 2j + 1 states and if the inequality,
Eq. (10.2.39), is satisfied we have that j must run between (j1−j2) and (j1+j2), assuming,
as we can always do, that we pick j1 ≥ j2. This means that the total number of states in
the second count is (the full summation of the series is left as an exercise):

NII =
j1+j2∑

j=j1−j2

(2j + 1) (10.2.48)

= (2j1 + 1)(2j2 + 1), (10.2.49)

thus we find the consistent result NI = NII .

10.2.3 Explicit form of the Clebsch–Gordan coefficients
Determining explicit and general expressions for Clebsch–Gordan is a time–consuming and
not very productive exercise that is still reason of nightmares for generations of students
who were forced to derive them. We just quote here the final result, so that you can
understand the reason of such nightmares:

Cjm
j1m1j2m2 = δm1+m2, m

√
2j + 1

(j1 + j2 − j)! (j1 − j2 + j)! (j2 − j1 + j)! (j1 + j2 + j + 1)!

×
√

(j +m)! (j −m)! (j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)!

×
∑

k

(−1)k

(
j1 + j2 − j

k

)(
j1 − j2 + j

j1 −m1 − k

)(
j2 − j1 + j

j2 +m2 − k

)
. (10.2.50)

We also recall here a few more properties of the Clebsch–Gordan coefficients. They are
real–valued by convention, and they satisfy the closure conditions∑

jm

Cjm
j1m1j2m2 C

jm
j1m′

1j2m′
2

= δm1,m′
1
δm2,m′

2
, (10.2.51)

∑
m1m2

Cjm
j1m1j2m2 C

j′m′

j1m1j2m2 = δj,j′ δm,m′ . (10.2.52)

10.3 Example: Two spin-1/2 particles
We first consider a simple example of the formalism developed so far, where we can
easily find an explicit representation for |j1, j2; j,m⟩ by bypassing the explicit calculation
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of the Clebsch–Gordan coefficients. The example consists in forming the total angular
momentum resulting from two spins 1/2. Formally, we form the vector operator

Ŝ = Ŝ(1) + Ŝ(2), (10.3.1)

= (Ŝx, Ŝy, Ŝz). (10.3.2)

The “convenient” basis in this case is then simply

|s1, s2;m1,m2⟩ = |s1,m1⟩ ⊗ |s2,m2⟩ , (10.3.3)

|m1,m2⟩ = |±,±⟩ , (10.3.4)

where in the last line we omitted the s1 = s2 = 1/2 quantum numbers and just
concentrated on the two possible values of m1 = ±1/2 and m2 = ±1/2. In total then we
have four states

|1⟩ = |+ +⟩ , |2⟩ = |+ −⟩ , |3⟩ = |− +⟩ , |4⟩ = |− −⟩ .

In order to find the states |j1, j2; j,m⟩ in the “standard” representation, we start by
explicitly computing the total spin squared

Ŝ2 = Ŝ2
(1) + Ŝ2

(2) + 2Ŝ(1)zŜ(2)z + Ŝ+
(1)Ŝ

−
(2) + Ŝ−

(1)Ŝ
+
(2) (10.3.5)

= 3
4ℏ

2
(
Î(1) + Î(2)

)
+ 2Ŝ(1)zŜ(2)z + Ŝ+

(1)Ŝ
−
(2) + Ŝ−

(1)Ŝ
+
(2) . (10.3.6)

From this expression we see that the last two terms are vanishing when applied to the
states |++⟩ and |−−⟩ since, for example,

Ŝ+
(1) |++⟩ = Ŝ+

(1) ⊗ Î(2)
(
|+⟩1 ⊗ |+⟩2

)
(10.3.7)

=
(
Ŝ+

(1) |+⟩1

)
⊗ |+⟩2 (10.3.8)

= 0. (10.3.9)

Furthermore, we can easily verify that |++⟩ is an eigenstate of Ŝ2, since

Ŝ2 |++⟩ =
(

3
4ℏ

22 + 2ℏ2 1
2

1
2

)
|++⟩ (10.3.10)

= 2ℏ2 |++⟩ , (10.3.11)

and likewise for |−−⟩,

Ŝ2 |−−⟩ =
(

3
4ℏ

22 + 2ℏ2
(
−1

2

)(
−1

2

))
|−−⟩ (10.3.12)

= 2ℏ2 |−−⟩ . (10.3.13)

With eigenvalue 2ℏ2. However, from the general theory we know that the eigenvalues
of Ŝ2 are also equal to ℏ2s(s + 1); thus we conclude that these two states have s = 1.
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We have then successfully found the first two states we were looking for in the standard
representation:

|j = 1;m = 1⟩ = |++⟩ , (10.3.14)

|j = 1;m = −1⟩ = |−−⟩ . (10.3.15)

From the general theory of angular momentum, however, we know that the j = 1 states
always come as a triplet of states (m = −1, 0, 1); thus there must be still a missing state
we have not found yet with j = 1,m = 0. In order to find it, we apply the lowering
operator

Ŝ− = Ŝx − iŜy (10.3.16)

= Ŝ(1)x + Ŝ(2)x − iŜ(1)y − iŜ(2)y (10.3.17)

= Ŝ−
(1) + Ŝ−

(2). (10.3.18)

to the state with highest m:

Ŝ− |j = 1;m = 1⟩ = Ŝ−
(1) |++⟩ + Ŝ−

(2) |++⟩ (10.3.19)

ℏ
√
j(j + 1) −m(m− 1) |j = 1;m = 0⟩ = ℏ

√
s1(s1 + 1) −m1(m1 − 1) |−+⟩

+ ℏ
√
s2(s2 + 1) −m2(m2 − 1) |+−⟩ , (10.3.20)

√
2 |j = 1;m = 0⟩ = |−+⟩ + |+−⟩ . (10.3.21)

From the last line we can read out the third state with j = 1,m = 0 we were missing
before:

|j = 1;m = 0⟩ = 1√
2
(
|−+⟩ + |+−⟩

)
. (10.3.22)

To find the last and final state (remember that we started with four states for the
“convenient” basis, so we need to find also four states in the standard basis) we realize
that the missing state must be the one with |j = 0;m = 0⟩ (that is the only allowed
value of j remaining, from the inequality condition (10.2.39)). This state is found
imposing that it is orthogonal to all the other states we have already found. We start by
imposing that it is orthogonal to the other state we found for m = 0:

⟨j = 0,m = 0|j = 1;m = 0⟩ = 0, (10.3.23)

and we obtain:

|j = 0;m = 0⟩ = 1√
2
(
|− +⟩ − |+ −⟩

)
. (10.3.24)

It can be easily checked that this state is also orthogonal to all the other states previously
found, just because they carry different m; thus all products such as ⟨− − | + +⟩ vanish.
To summarize, we have found the four states we were looking for in the “standard”
representation:
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|j = 1;m = 1⟩ = |+ +⟩ , (10.3.25)

|j = 1;m = 0⟩ = 1√
2
(
|− +⟩ + |+ −⟩

)
, (10.3.26)

|j = 1;m = −1⟩ = |− −⟩ , (10.3.27)

|j = 0;m = 0⟩ = 1√
2
(
|− +⟩ − |+ −⟩

)
. (10.3.28)

with the first three having j = 1 (the triplet) and the last one with j = 0 (the singlet).

10.4 Adding Spin and Orbital Momentum
Another example we propose here is the important case of adding spin and orbital angular-
momentum degrees of freedom. For example, we can form the total angular momentum
of a particle with spin:

Ĵ = L̂ + Ŝ, (10.4.1)
= L̂⊗ÎS + ÎL⊗Ŝ, (10.4.2)

where the second line once more emphasizes that the two operators act on different Hilbert
spaces. Notice that actually in this case the first operator (the orbital angular momentum)
acts on an infinite Hilbert space, whereas the spin operator acts on a finite vector space. As
before, we can interpret the resulting rotation operator as the product of two independent
rotations on the respective degrees of freedom:

D̂(θ) = exp
(

− i

ℏ
L̂·θ

)
⊗ exp

(
− i

ℏ
Ŝ·θ

)
. (10.4.3)

A typical way of writing the wave function of a particle with spin (say, an electron) is by
means of the tensor-product basis |r⟩ ⊗ |s,m⟩ such that the state vector is(

⟨r| ⊗ ⟨s,m|
)

|Ψ⟩ = Ψ(r,m), (10.4.4)

where the first variable r = (x, y, z) is continuous, whereas the second one m = ±1
2 is

discrete. An alternative way to write the state is as a vector of two continuous-space wave
functions: (

Ψ+(r)
Ψ−(r)

)
, (10.4.5)

so that Ψ±(r) = Ψ(r,±1
2). For example |Ψ+(r)|2 gives the probability density of finding

a spin up at position r. This representation is also called spin–orbital.



CHAPTER 10. ADDITION OF ANGULAR MOMENTUM 14

Standard basis
The spin-orbital representation is typically enough for most applications, but we might
also want the “standard” representation involving the eigenvalues of Ĵ2, Ĵz, Ŝ

2, L̂2. We
call this basis

|l, s; j,m⟩ , (10.4.6)
whereas the “convenient” tensor-product basis is

|l,ml, s,ms⟩ = |l,ml⟩ ⊗ |s,ms⟩ . (10.4.7)
In what follows we omit the explicit value of s = 1

2 and l from all kets. From Eq. (10.2.39)
there are only two allowed values of j, namely jmax = l + 1

2 and jmin = l − 1
2 . As for two

spins, the state with jmax = mmax = l + 1
2 is∣∣∣j = l + 1

2 , m = l + 1
2

〉
= |l, l⟩ ⊗ |+⟩ . (10.4.8)

Applying the total spin lowering operator Ĵ− = L̂− + Ŝ− and using
Ĵ− |j,m⟩ = ℏ

√
j(j + 1) −m(m− 1) |j,m− 1⟩ we get

Ĵ−
∣∣∣j = l + 1

2 , m = l + 1
2

〉
= ℏ

√
2l + 1

∣∣∣j = l + 1
2 , m = l − 1

2

〉
(10.4.9)

= L̂− |l, l⟩ ⊗ |+⟩ + |l, l⟩ ⊗ Ŝ− |+⟩ (10.4.10)

= ℏ
(√

2l |l, l − 1⟩ ⊗ |+⟩ + |l, l⟩ ⊗ |−⟩
)
. (10.4.11)

thus

∣∣∣j = l + 1
2 , m = l − 1

2

〉
=
√

2l
2l + 1 |l, l − 1⟩ ⊗ |+⟩ +

√
1

2l + 1 |l, l⟩ ⊗ |−⟩ . (10.4.12)

Iterating the procedure gives the general relation

∣∣∣j = l + 1
2 , m

〉
=
√
l +m+ 1

2
2l + 1

∣∣∣l, m− 1
2

〉
⊗ |+⟩ +

√
l −m+ 1

2
2l + 1

∣∣∣l, m+ 1
2

〉
⊗ |−⟩ .

(10.4.13)
For the multiplet with j = l − 1

2 the highest-m state is a linear combination∣∣∣j = l − 1
2 , m = l − 1

2

〉
= c1 |l, l − 1⟩ ⊗ |+⟩ + c2 |l, l⟩ ⊗ |−⟩ , (10.4.14)

whose coefficients follow from the orthogonality condition

⟨j = l + 1
2 , m = l − 1

2 |j = l − 1
2 , m = l − 1

2⟩ = 0, (10.4.15)

c1

√
2l

2l + 1 + c2

√
1

2l + 1 = 0. (10.4.16)

Choosing c1 =
√

1/(2l + 1) and c2 = −
√

2l/(2l + 1) (using the normalization condition)
gives
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∣∣∣j = l − 1
2 , m = l − 1

2

〉
=
√

1
2l + 1 |l, l − 1⟩ ⊗ |+⟩ −

√
2l

2l + 1 |l, l⟩ ⊗ |−⟩ . (10.4.17)

Requiring orthogonality with the corresponding states in the j = l + 1
2 multiplet,

⟨j = l + 1
2 , m|j = l − 1

2 , m⟩ = 0, (10.4.18)

finally yields

∣∣∣j = l − 1
2 , m

〉
=
√
l −m+ 1

2
2l + 1

∣∣∣l, m− 1
2

〉
⊗ |+⟩ −

√
l +m+ 1

2
2l + 1

∣∣∣l, m+ 1
2

〉
⊗ |−⟩ .

10.5 References and Further Reading
The discussion in this Chapter is mainly adapted and simplified from Sakurai, Chapter
3 (Section 3.8). Cohen-Tannoudji’s book discusses the addition of angular momentum
in Volume 2 (Chapter 10). The complements to that Chapter (especially AX and BX)
contain many details on Clebsch–Gordan coefficients and additional examples that can
deepen one’s technical understanding of the topic.
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